

Be inspired. Move forward.

NIDE

SENSORS The right scanning system for each type of material

Ultrasonic sensors (US)

The scanning of the web edge is carried out contactless by ultrasonic waves.

Properties of BST eltromat ultrasonic sensors:

- Insensitive to dirt and changes in the transparency of the material
- No changes to the measured values through flutter of the web in the sensor scanning area
- Compensation for any interference which may be caused by external sound sources or other environmental influences

Field of application:

- Materials with dust or fluff-like deposits
- Films with a variable level of transparency
- Light-sensitive materials
- Large proportional measuring ranges (* US SEN 3xx) allow the control without mechanical adjustment of the sensors – even with relatively large web width variations

US 2010

IR 2011

Optical sensors (IR/RS)

Non-contact scanning of the web edge is carried out by light.

Properties of optical BST eltromat sensors:

- optical sensing light (insensitive to external light sources)
- No influence on the measurements by flutter of the web within the light path
- Optional connection for air sweep protects the lens against contamination from paper, dust or other contaminants (IR 2011)
- Large proportional scanning band permits web center-line guiding even for relatively large web width variations (*IR SEN 4xx, RS 150)

Field of application:

- Transparent and non-transparent materials
- Thick materials

.

	Shape	Measuring range [mm]	Resolution	Measuring distance [mm]	Analog output	Digital output
US 2010	Gap 40 mm, 70 mm	12	typical 0,05 mm	-	0 - 10 V	BST eltromat CAN-Bus
IR 2011	Gap 40 mm, 70 mm	analog: 16 mm digital: 24 (IR 2011/40) 20 (IR 2011/70)	typical 0,05 mm	-	0 - 10 V	BST eltromat CAN-Bus
US SEN 3xx	Gap 38 mm, 101 mm	30 – 467	typical 0,05 mm	_	_	BST eltromat CAN-Bus
IR SEN 4xx	Gap 38 mm, 101 mm	30 – 284	typical 0,05 mm	-	-	BST eltromat CAN-Bus
RS 20	Sensor with reflector	20	0,03 mm	25 +/-5	0 – 20 mA	_
RS 30	Sensor with reflector	30	0,05 mm	100 +/-10	0 – 20 mA	-
RS 150	Sensor with reflector	150	≤ 0,15 mm	200	0 – 20 mA	-
CLS Pro 600	Camera	25	0,005 mm	25	0 - 10 V	BST eltromat CAN-Bus
CCD CAM 100	Camera	variable	1/60.000	300 – 900	-	BST eltromat CAN-Bus/ ethernet ProT

Digital sensors

The non-contact scanning of the web of material is carried out by detecting contrasts in light conditions. A CCD Cam 100 can scan up to eight contrast transfers.

CCD CAM 100

- Resolution of up to 60,000 pixels by a microprocessor controlled CCD chip
- Adaptation of the viewing range to the specific application by selecting from a range of different lenses
- Camera parameters adjustable for change of material while machine is running (no change-over time required)
- Quick set-up and camera alignment via an integrated graphic display
- Simple operation using various automatic functions (for example, the removal of interfering contrasts, compensation for contamination, white balance, and storage of the set-up values)
- The production and adjustment parameters can be transmitted more quickly and more securely by networking via the BST bus system

Field of application:

- Digital scanning of web edges, printed edges or printed lines
- Web center-line guiding, web width measurement
- Control of tools or other machines (tracing of cutting knives, etc.)

CLS Pro 600

- Precise scanning of lines, print edges or web edges using a color sensor
- Optimum lighting thanks to automatically controlled LEDs
- Outstanding dependability even at the highest web speeds
- Clear color display
- Intuitive user guidance and convenient operation
- Laser guided positioning
- Convenient selection of printed line, print edge or web edge using a color display of contrast transfers

Field of application:

- Contrast edge controlling
- Web edge or printed line

				Controller configuration			
Edges	Measuring media	Enclosure rating	Special Function	Basic	Advanced	Eco	
1	ultrasonic	IP 54		V	V	~	
1	LED, red	IP 54		×	V	~	
2	ultrasonic	IP 40	dynamic compensation	V	×	×	
2	infrared	IP 40	dynamic compensation	v	×	×	
1	LED, white	IP 67		~	<i>v</i>	×	
1	LED, white	IP 67		×	V	×	
1	infrared	IP 67		V	v	×	
2	LED, white	IP 54	Color display, line/edge detection, interrupted line/edge detection	v	V	~	
8	external	IP 54		V	~	~	

Electric-motor-driven sensor positioning

If the position of the sensor is difficult to reach or if the sensing position has to be changed frequently due to varying web widths, a sensor positioning device (FVG) will take over the adjustment of the sensor position. Different automatic electric-motor-driven systems are available, depending on the requirements.

Sensor positioning device FVG POS 100 (Basic)

The sensor positioning device FVG POS 100 is suitable for a wide range of applications and available in different versions. Functions such as edge control and center control (also with variable web center) are standard. The intelligent communication with the controller ekr 500 digital Unit Touch works according to the

Plug & Play principle, so that the setup and commissioning is mainly automated. The modular design of these sensor positioning devices can be used even with the largest web widths.

	Guiding	Function	Special function	Required web guider
FVG POS 100	edge	automatic edge seeking	Oscillation	Basic
FVG POS 100	two edges with web centre	automatic edge seeking and guiding to edge 1, edge 2, centre (independently)	Web width measuring Shifting of center at off-center running (narrow) webs Oscillation	Basic
SP POS 100	edge/centre	motorized positioning of the edge sensors without edge seeking		

Sensor positioning device FVG POS 100 (Basic)

Your local contact

BST eltromat International

Heidsieker Heide 53 • 33739 Bielefeld • Germany

Tel.: +49 5206 999-0 • Fax: +49 5206 999-999 • info@bst-international.com

A member of the eLeXIS group of companies © 2018 BST eltromat International • BST-eltromat_B405_0818_EN • Subject to modification

Be inspired. Move forward,